
J .  Fluid Mech. (1995), vol. 295, pp.  61-89 
Copyright 0 1995 Cambridge University Press 

61 

A series solution of the nonlinear wind-driven 
ocean circulation and its inertial limit 

By W. T. M. VERKLEY’f- A N D  J. T. F. ZIMMERMANlY2 
Netherlands Institute for Sea Research, Den Burg (Texel), The Netherlands 

Institute of Marine and Atmospheric Sciences, University of Utrecht, The Netherlands 

(Received 25 April 1994 and in revised form 10 April 1995) 

A series solution approach to the forced and damped quasi-geostrophic barotropic 
vorticity equation is considered in order to examine the strongly forced and inertial 
limits of ocean gyre dynamics. The strongly forced limit is the limit investigated 
numerically by Veronis (1966b). It is shown that this limit, although superficially 
having the same symmetry properties as the inertial limit, is distinguishably different 
from the latter. After isolating the inertial limit in an appropriate way it is shown that 
our series solution method is able to find the ‘free mode’ and its ‘almost free 
correction’, that the ‘free mode’ obeys the integral criteria of Niiler (1966) and 
Pierrehumbert & Malguzzi (1984) and that the relationship between the streamfunction 
and the absolute vorticity is in general a nonlinear one. 

1. Introduction 
Wind-driven ocean circulation is a subject with a long history. Someone looking at 

the topics of present day theoretical research, like eddy-driven circulation, thermocline 
ventilation, vorticity homogenization and recirculation, all usually with a strong 
baroclinic component, will find these subjects rather remote from those of earlier days 
when, starting with Stommel’s (1948) linear beta-plane model, the nonlinear barotropic 
quasi-geostrophic vorticity equation was the paradigm of gyre dynamics. One might 
think that all properties of that equation have been understood and/or that all 
unsolved problems are no longer of interest to present day theories. However, it is our 
feeling not only that there are indeed important unsolved aspects of the simplest model 
of nonlinear ocean circulation, but also that a solution of the outstanding problems can 
be of benefit when dealing with more sophisticated theories. This applies particularly 
to the question of the inertial limit of ocean gyre dynamics, which is the main theme 
of this paper. 

In a sense nearly all properties of nonlinear barotropic wind-driven ocean circulation 
with bottom friction are contained in the sequence of numerical simulations by Veronis 
(1966a, b), repeated later on by Harrison & Stalos (1982). Principally this sequence 
shows the symmetry properties of a gyre for increasing forcing and constant friction. 
In the limit of weak forcing the Stommel solution is recovered with an east-west 
symmetry axis for symmetric forcing. The solution is characterized by a boundary layer 
current along the west side of the basin, which breaks the symmetry around the 
north-south axis. In the limit of strong forcing the symmetry axis runs more or less 
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north-south but the symmetry breaking due to the boundary layer current, which now 
runs along the north side of the basin, is weaker. In the intermediate regime all 
symmetry is lost but in a sense the ‘symmetry’-axis is gradually turning in the direction 
of the circulation with increasing forcing. These symmetry properties of the nonlinear 
barotropic vorticity equation have recently been re-examined by Zimmerman & Maas 
(1989), Zimmerman (1993) and de Swart & Zimmerman (1993). 

The fact that in the limit of strong forcing the circulation has a north-south 
symmetry axis has sometimes led to an interpretation of that limit as an inertial mode 
in the sense of Fofonoff (1954, 1962); see Veronis (1966b), Niiler (1966), Holloway 
(1986) and Pedlosky (1987, p. 315). This interpretation, however, has never been 
substantiated and it is the principal message of this paper to show that it cannot be 
substantiated because it is a false interpretation. As has been stressed by Zimmerman 
& Maas (1989) and Zimmerman (1993) any truly inertial circulation must have 
vanishingly small forcing and friction in order to be classified as such. Here we pursue 
the discussion in which our aims are the following. (i) To show simply, in essence by 
means of an absolute vorticity versus streamfunction scatter plot, that the limit of 
strong forcing is not an inertial limit. (ii) To define properly the inertial limit in ocean 
circulation theory and to show that in that limit a unique solution of the circulation 
obeying the integral criteria of Niiler (1966) and Pierrehumbert & Malguzzi (1984) can 
be obtained and finally (iii) to show that in general the inertial limit does not have a 
linear relationship between absolute vorticity and streamfunction as in the Fofonoff 
mode. We do so by employing the series solution method of Zimmerman (1993) that 
we modify in order to discuss the inertial limit. Our treatment resembles to a certain 
extent that of Merkine, Mo & Kalnay (1985), although our series expansion for the 
inertial mode is more direct and simpler. It furthermore provides all higher-order terms 
in a systematic way and as a consequence gives a direct proof of the generally nonlinear 
relationship between streamfunction and absolute vorticity. 

The general outline is given in 32. The Veronis sequence and its limit of strong 
forcing is discussed in $3.  The remaining two sections contain our primary results with 
respect to the inertial limit., In $4 we derive the series solutions for the ‘free mode’ and 
the ‘almost free correction’ stressing that of all possible solutions of the former only 
a single unique one is selected by a solvability criterion due to the latter - i.e. due to 
weak forcing and friction. Finally in $ 5  we show that the functional relationship 
between absolute vorticity and streamfunction of the free mode is in general a 
nonlinear one which asymptotically may become linear in a specific part of the 
parameter regime. In the Appendix we show that the terms in the series solution can 
be calculated exactly by a spectral method that allows a quick calculation of the series 
to any desired order. The convergence properties of the series are also discussed in the 
Appendix. 

2. The wind-driven ocean circulation - two perturbation series 

a beta-plane. Its steady-state form reads 
The system that is studied is the forced and damped barotropic vorticity equation on 

d+ J ( @ , 5 + ~ ) + 7  = 0, (1) 

where 5 = V2$. The operators V2 and J are the Laplace and Jacobi operators for a flat 
surface, 5 is the relative vorticity, @ the streamfunction and f= y the Coriolis 
parameter. The system is forced by a field -7, the curl of the wind stress divided by 
the depth of the fluid, and damped by bottom friction KS. The system is non- 
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dimensionalized by measuring lengths in units of the lengthscale R (characteristic of the 
size of the basin) and time in units of (PR)-l, where p is the northward derivative of 
the Coriolis parameter. This means that for the dimensional quantities, marked with 
asterisks, we have I& = [PR, $* = $/3R3, K* = KPR and 7* = 7P2R2. The non- 
dimensional number 7 = 7 * / (  p2R2) will be referred to as the Rossby number. It is the 
ratio of the Sverdrup velocity scale 7 * / P  to the rotation velocity scale PR2 and 
conforms in this sense to the usual definition of the Rossby number as given in 
Pedlosky (1987, p. 3 ) .  The non-dimensional number K = KJPR will be referred to as 
the Ekman number. In the general sense that this number is the ratio of the frictional 
decay rate K* and the rotation rate pR, this definition also conforms to the definition 
of Pedlosky (1987, p. 191). Because we wish to exclude any influence from outside on 
the symmetry properties of (l), we assume that the forcing - T is uniform in space. For 
the same reason we choose the ocean basin to be a circle with radius R. We will use 
Cartesian coordinates x and y as well as polar coordinates r and 8, where x = r cos 8 
and y = r sin 8. In terms of these coordinates the Laplace and Jacobi operators read 

In terms of the Rossby number 7 and the Ekman number K we define two new 
parameters, which we will call 6 and a, by 

6 = 7 / (2~) ,  (4) 
01 7 / ( 2 K 2 )  = 6 / K ,  ( 5 )  

which, expressed in dimensional quantities, are 6 = T * / ~ P R K ,  and a = T * / ~ K ; .  The 
number 6, being half of the non-dimensional ratio of the forcing and friction 
parameters, can be interpreted as a measure of the strength (in terms of vorticity) of 
the circulation. The number a relates this strength to the friction parameter and can 
therefore be interpreted as a measure of nonlinearity. For this reason a is sometimes 
called the Reynolds number. We note that /3 is absent in the dimensional expression for 
a. This allows us to study the effect of increasing nonlinearity (increasing a)  for small 
values of P. This leads naturally to the idea of expanding (1) in terms of a power series 
in P. This is effectively what we do if we expand (1) in a power series of K - ~  or 6-l, as 
can be seen from the dimensional expressions for K and 6. An expansion in K - ~  turns 
out to be convenient in studying the Veronis sequence and will be applied in $ 3 .  An 
expansion in 6-1 is appropriate in studying an alternative sequence and the inertial limit 
which are the subjects of $94 and 5. We now give these two perturbation expansions, 
starting with the expansion in K - ~  and continuing with the expansion in 6-l. 

2.1, A perturbation series in K - ~  

Expressing 7 in terms of 01 and dividing (1) by K allows us to write this equation as 

6-k KP1J($, [+y) + 2 K a  = 0. (6) 

Following Zimmerman (1993) we expand and $ in terms of a power series in K - ~ ,  i.e. 
we write 

5 = K< - : _ , + [ o + ~ - 1 [ 1 + ~ - 2 ~ 2 + . . . ,  

$ = K $ - ~  + $o + K - ’ $ ~  + K - ’ $ ~  + . . . . 
(7 a) 

(7 b) 
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Substituting these expansions into (6)  and collecting like powers of K-,, we obtain a 
hierarchy of equations. At order - 1 we have 

6, + 

[- - -2a, 

LJ = - 2% 

$-, = -fa(r2- 1). 

the solution of which reads: 

1 -  

Owing to the solution (9)  for C-, and $-1 we have 

Equations (7) and ( 1 1 )  are the basic perturbation series in K-'. 

2.2. A perturbation series in 6-1 

Dividing ( 1 )  by OIK and using the definitions (4) and ( 5 )  of 6 and a, we obtain the 
following alternative form of ( 1 )  : 

(12) a-l[+ 61J($, g + y )  + 26OI-' = 0. 

Because 6 is proportional to K, we might indeed expand c and $ in a power series in 
&', i.e. 

6 = &-, + to + 6-1& + S-2& + . . . , 
$ = 6XPl + xo + 6-1x1 + 6-2x2 + ... . 

( 1 3 4  

(13b) 

In a similar way as we derived (1 1 )  from ( 6 )  the equations for the different orders in 
6-1 are obtained as 

5-, = -2, ( 1 4 4  

(14b) 

( 1 4 4  

(a-'-a/ae)t, = -J(xo, 5,)-J(x,,f;,+Y>, ( 1 4 4  

(01-1 - a/ae) to = x, 

(a-l- a / w  51 = - J ( x o , 5 ,  +A 
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Equations (13) and (14) are the basic perturbation series in 6-l. By comparing (1 1) with 
(14) it can be seen that there is a simple relation between the fields ck and tk and 
between @k and xk,  namely, 

The solutions at different order in these expansions still depend parametrically on a. 
Thus, looking particularly at the strongly nonlinear regime of each of these 
solutions - as a series in K - ~  or in 8-l- each can be expanded subsequently in a-'. In 
the next sections we shall show that the final asymptotic result has a quite different 
physical interpretation for the series in K-' to that in S1. 

t k  = ak&;lc, X k  = .'@k. (154 b) 

2.3 Solving the equations 
Equations (1 1) and (14) can be solved consecutively. To give an impression of the type 
of solutions to be expected from these series we consider (1 1 b) and (1 1 c). Equation 
(1 1 b) is solved by 

a 
( r  cos 8- ar sin 6), 

c o = m  

a 
( r 2 -  1) (rcos 8-ar sin 8). 

@O = 8( 1 + a2) 

For the Jacobian of @o and co+y we then have 

a 
J(@o, c o + Y )  = 8(1 + a 2 ) 2  [(1+ a2) (2r2 - 1) + (1 -a2) r2 cos 28- 2ar2 sin 281. (17) 

This means that the solution of (1 1 c) is given by 

r2sin26 , (18a) 1 (1 - 5012) 

(1 + 4a2) 
a(4a - 2 2 )  

(1 + 4012) x [(1+012)(2r2- 1)+ r2 cos 28 - 

a (r2-1) 
'l = -8(1 +a2)2 4 

r2sin28 . (18b) 1 (1 - 5 2 )  a(4a - 2 2 )  
x [ T ( r 2 - -  I )+ r2 cos 28 - 

3( 1 + 4a2) 3( 1 + 4a2) 

The fact that the Laplacian of the given streamfunctions leads to the given relative 
vorticity fields can be checked by using (2). Note that to and xo in the corresponding 
expansion in K' are identical to co and @o. The fields of order 1 in the 6-1 expansion 
are a times the fields in the K - ~  expansion. Apart from the monopole term in the first- 
order solution, these expressions are identical to those of Zimmerman (1993). 

In the Appendix we show how solutions can be obtained to any desired order using 
a spectral method. In this method the fields are represented in terms of the func- 
tions Xmn(r, 6) = rn eime, where m = . . . -2, - 1,0,1,2, . . ., and n = Iml+ 2p with 
p = 0,1,2, ... . If - N  < m < Nand n < N these functions span the same linear vector 
space as 1, x,y, x2, xy,y2, . . ., x N ,  xN-ly ,  . .., xyN-l,yN, which space will be denoted by 
TN. In the Appendix it is shown how the different operators appearing in (1 1) and (14) 
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FIGURE 1. The parameter space of the model, with h a  on the horizontal axis and In K on the vertical 
axis. The sloping thin solid lines are isolines of 6. Points above the thick solid curve correspond to 
a, K and 6 values for which the series expansion converges uniformly over the whole basin. Beneath 
this curve the convergence is not uniform and for clarity this region has been shaded. The solid 
horizontal line denotes the Veronis sequence, discussed in $3, with B, A and C as representative 
examples. The solid sloping line denotes the sequence to the inertial limit, with examples D, A and 
E, which is discussed in 444 and 5. 

can be represented. It is also shown that fields ck and $k that result from solving the 
kth equation (1 1) (and the fields gk and xk in (14)) have the following properties. First, 
ck is an element of T(k + 1) and ?+bk is an element of T(k + 3) with /ml < k + 1. Secondly, 
for even k the fields i& and @k are expressed in functions X,, with odd m, and for odd 
k the fields flk and 11.1, only contain functions X,, with even m. 

In the Appendix there is an investigation of the conditions under which the series 
expansions converge. The result is given in figure 1. The abscissa is lna  and the 
ordinate is In K.  The thin sloping straight lines denote values of constant 6. Points above 
the solid curve correspond to parameters a, K and 6 for which the series expansions for 
c converge uniformly. Points beneath the curve correspond to parameters for which the 
series expansions do not converge uniformly, although the series might converge 
locally. For clarity the region beneath the curve has been shaded. The Veronis sequence 
is a series of solutions for which K is constant. An example of such a sequence is marked 
in figure 1 by the solid horizontal line. This sequence, and in particular the solutions 
A, B and C, will be discussed in the next section, using the series expansion in K - ~ .  

Figure 1 shows, however, that the expansions also allow us to consider a sequence in 
which 6 is kept fixed as long as its value is large enough. Such an alternative sequence 
is marked by the sloping solid line in figure 1. This sequence and its representative 
points A, D and E will be discussed in $84 and 5,  using the series expansion in 8-l. 
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Figure 2 
-9.67 x lo-' 9.55 x lo-' - 1.75 -3.35 x lo-' - 1.40219 x 10' - 1.40205 x 10' 
- 1.63 x lo-' -2.48 x - 1.78 -4.07~10- '  - 1 . 4 1 1 7 4 ~ 1 0 ~  - 1 . 3 9 2 5 1 ~  10' 

1.32 x 1.49 x 1.98 x 2.28 x lo-' 4.47452 x lo-' 3.50525 x 10' 

Figure 3 
-2.83 -8.53 x lo-' -2.41 -3.67 x lo-' -2.33 - 1.44 x lo-' 

3.84 x 3.80 x lo-' 1.96 x 2.21 x lo-' 9.09 x 1.23 x lo-' 

Figure 4 
- 1.91 1.68 x lo-' - 1.75 -3.35 x lo-' - 1.20 - 7.04 x lo-' 
-9.51 x lo-' -9.38 x lo-' - 1.78 -4.07 x lo-' -2.15 -2.17 x lo-' 

3.01 x 2.36 x lo-' 1.98 x 2.28 x lo-' 1.90 x 2.21 x lo-' 

- 2.66 - 2.47 - 1.71 - 1.40 - 1.20 - 7.04 x lo-' 
- 3.62 - 1.69 - 2.67 -7.38 x lo-' -2.14 -2.17 x lo-' 

7.01 x loM3 6.36 x lo-' 3.81 x 3.80 x lo-' 1.90 x 2.21 x lo-' 

Figure 5(a) 

Figure 5(b) 
-9.88 x lo-' 9.88 x lo-' - 1.01 1.01 - 1.06 1.06 
-4.70 x lo-' 4.70 x lo-' -4.54 x lo-' 4.54 x lo-' -4.17 x lo-' 4.17 x 

Figure 9 
- 1.27 1.27 - 1.46 -2.33 x lo-' -1.42 -7.57 x 10-3 
- 1.27 1.27 - 1.54 - 8 . 3 7 ~  lo-' -1.47 - 1.34 x lo-' 

7.14 x 1.55 x lo-' 7.39 x 1.32 x lo-' 8.96 x 1.31 x lo-' 

TABLE 1. Minimum and maximum values, of the fields shown in figures 2, 3, 4, 5(a, b) and 9. The 
maximum values in the fields occur around the position marked by H in the figures. The first pair of 
two columns gives the minima and maxima of the fields in the first column of the figures, the second 
pair of columns gives the minima and maxima of the fields in the second column of the figures, etc. 
The contour interval is always +times the difference between minima and maxima. The extreme values 
were obtained from a 51 x 51 grid xu = - 1 +(i- 1)/25, yu = - 1 + ( j -  1)/25 with x:,+yi, < 1. 

3. The Veronis sequence 
As mentioned in the Introduction, the basic symmetry properties of the quasi- 

geostrophic vorticity equation (1) have been discovered by Veronis (1966b) in a series 
of numerical simulations. Essentially this series is one of increasing forcing (Rossby 
number) keeping the damping (Ekman number) fixed. In terms of the parameters a and 
K ,  this sequence corresponds to a horizontal line in figure 1. If we identify the radius 
R of our basin with half of the width of Veronis' square basin (7c/2)L, then the 
sequence that Veronis studied can be described as one in which the values of (In a, In K )  

are (-8.52, -3.45), (-1.71, -3.45), (-0.69, -3.45), (0.69, -5.51), (2.08, -4.14), 
(2.74, -4.74) and (3.47, -4.14). The first of these cases corresponds with Veronis' 
figure 4, the last one with his figure 9 (lower). Note that the last case falls within the 
region in which our series expansion converges. The particular sequence that we will 
investigate is denoted by the horizontal line drawn in figure 1. The points B, A and C 
are typical members of this sequence, corresponding to (lncr, 1nK) = (-5.00, -0.75), 
(0, -0.75) and (5.00, -0.75). In figure 2 we show the associated absolute vorticity, 
relative vorticity, streamfunction and a scatter plot of absolute vorticity versus 
streamfunction of these solutions, calculated with the method described in $2.1 
and the Appendix, summing terms up to k = 50. The plots in figure 2 summarize the 
basic features of the Veronis sequence. First, we see that for both small and large values 
of 01 the relative vorticity and the streamfunction of the solution are symmetric; for 
small values of a around an east-west axis, for large values of a around a north-south 
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FIGURE 2. The absolute vorticity (first row), relative vorticity (second row), streamfunction (third 
row) and scatter diagram (fourth row) of absolute vorticity against streamfunction of the solutions 
corresponding to the points B, A and C of the Veronis sequence, depicted graphically by the solid 
horizontal line in figure 1. The first column of plots correspond to point B, the second to point A and 
the third to point C in figure 1. The fields were calculated by summing the terms of the series expansion 
in K - ~  up to k = 50. The extreme values in this figure and in figures 2, 3, 4, 5(a, b) and 9 are given in 
table 1. High values of the plotted fields occur around the symbol H. 

axis albeit with a lesser displacement of the circulation centre with respect to the basin 
centre than in the small a case. (In the large-a case the displacement of the circulation 
centre is so small as to be not noticeable in the streamfunction plot.) Going from small 
to large values of a, the symmetry axis turns from east-west to north-south although, 
in fact, the symmetry is broken at intermediate values of a. Indeed, in this 
case - exemplified by point A in figure 1 and the second column of plots in figure 2 - all 
symmetry is lost, which is most clear in the relative vorticity field. The influence of the 
latter on the absolute vorticity field is evident in the strong northward bending of the 
contour lines on the north-western side of the basin. All these features are recovered 
in the analytic expressions up to order 1 as given in (9), (16) and (18). This was the main 
point in the work of Zimmerman (1993). 
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In the Veronis sequence two limiting cases are of special interest. The first is the limit 
in which a+O (lnct+- 00). Since a = 7 / k 2 ,  this is the limit in which the forcing 
becomes very much smaller than the friction. As the amplitude of the solution will be 
very small, the system is essentially linear and the corresponding limit might be called 
the linear limit. This limit will be discussed in $3.1. The other limit is 01 + co (In a + co). 
This is the limit of strong forcing, discussed in $3.2. Subsection 3.1 mainly serves to 
illustrate the series expansion in K - ~  in a case in which the exact solution is known. 
Readers who are not particularly interested in the linear limit per se may skip $3.1 and 
continue with $3.2, without losing the thread of the argument. 

3,1. The limit of weak forcing - the linear limit 

In the linear limit 01 becomes vanishingly small while K is kept constant. In view of 
definition (5 ) ,  this means that the forcing 7 = 2 a ~ '  becomes vanishingly small. We may 
analyse the system in the usual way by choosing a particular value of K and expand 5 
and $ in power series in a:  

5 = p+O1c1+ay2+ ..., $ = $'+a$'+a2$2+ ... . (190, b) 

Note that on 01 the superscripts denote powers, whereas on c and $ they denote orders. 
Multiplying (6) with K and substituting (19) for g and $, we find that co = 0 and $' = 0 
and that c1 and $l satisfy the linear Stommel equation (Stommel 1948): 

The exact solution for a circular basin reads, in terms of the streamfunction (Beardsley 
1969), 

where Z, is the mth order-modified Bessel function of the first kind. 
The purpose of the rest of this subsection is to show that if we apply the expansion 

in a to each of the equations in the hierarchy ( 1  1) and retain only the zeroth- and first- 
order terms, one naturally arrives at a solution of the Stommel equation. For the fields 
Q and $k in ( 1  1 )  we write 

(22a, b) 

Cz = K { ? l + { i + K - l < t + . . . ,  $' = K @ k 1 + $ i + K - l $ ; + . . .  . ( 2 3 4  b) 

c k  = c",aci+a2cE+ ... ) $k = $E+a$i+a2@i+ ... ) 
which gives the following expressions for 5' and $z ( I  = 0,1,2, ...) in (19): 

It can then be shown that all terms [0,(k = - 1 ,  0 ,  1 ,  . . .) are zero and that 

(24a, b) 

the latter expression applying for k 2 0. The corresponding streamfunctions can be 
obtained by using the expressions in $A 1 of the Appendix. We see that f;' (and 
therefore $Io), as given by (23), is identically zero as it should. By substituting (24) in 
(23a) we can check that our series expansion for <' is a solution of the Stommel 
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FIGURE 3. The relative vorticity c1 (first row) and the streamfunction +hl (second row) of the solution 
in the linear limit, calculated using the series expansion in K - ~  up to k = 50. In the first column the 
value of In K is -0.25, in the second column the value of InK is -0.75 and in the last column In K 

is - 1.25. The fields in the middle column should be compared with those of the first column in 
figure 2, where the solution is shown for the same value of K but with a small though non-vanishing 
value of a. 

equation (20). Using the method described in $A 3 of the Appendix we find that the 
series expansion for 5' converges uniformly if 1nK > - 1.57. As an illustration, we 
calculated three examples of 6' and $l, summing terms up to k = 50. The results, for 
1nK = -0.25, -0.75 and - 1.25, are shown in figure 3. The middle case should be 
compared with the first column of figure 2, which shows the solution for the same value 
of K but with a small though non-zero value of a. 

Expressions (24) allow us to calculate a few low-order terms of 6' and $'. For the 
relative vorticity 5' we have 

[51 = -2, 5; = rcos 6, 5: = -32r2- 1 +r2cos26], (25 a-c) 

and for the streamfunctions $' 
$5, = - i (r2 - l),  $; = +(r2 - 1) rcos 8, (26 a, b) 

(26 4 $: = -&(r2- l)[+(r2- 1)+$r2cos28]. 

It can be checked that these results are in accordance with the general expressions (9), 
(16) and (18) by taking the limit for vanishingly small a and keeping terms of order 01. 
It can also be verified that the results comply with the general solution (21) of the 
Stommel equation by expanding (21) in K-'. All relevant properties of the linear limit 
as displayed in figure 3 can easily be deduced from these low-order expressions, in 
particular the strictly western intensification (only cos m6-terms in the expansion) and 
the equality of absolute and planetary vorticity. 

3.2. The limit of strong forcing 
In the limit in which the number a goes to infinity, keeping the value of the Ekman 
number K fixed we encounter a strongly nonlinear regime characterized by strong 
forcing. We can analyse this regime by writing Ck and $k of the hierarchy (1 1) in a 
power series in a-', starting with a. From (9) it follows that such a series for and 
$-, consists of only one term proportional to a. By dividing (1 1 b) by a, it follows that 
the expansion of [,, (and thus of $3 starts with a term independent of a followed by 
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terms of order a-l, a-2, etc. In the same way it can be seen that the expansions of 
and start with a-l, that the expansions of C2 and $2 start with aP2, etc. So, if we are 
only interested in the total solution up to order a-l, we can limit ourselves to k = - 1, 
0 and 1 in the K - ~  expansion. As the exact results for these terms are given in 92, we 
can expand these expressions in a power series in a-l to find that 

1 1 
[ = - 201~ - r  sin 8 - - r  cos 8-- (2r2 - 1) + O(a-2), 

a 8 a K  

1 1 
8a 6 4 a ~  

.;aK(r2- l)-$(r2-- 1)rsin8+-(r2- 1)rcos8--(r2- 1)2+O(a-2), (28) 

1 1 

a 8 a K  
6+y = - 2 a ~ - - r  cos 8-- (2r2 - 1) + O(aP2). 

For the discussion of the inertial limit in the next sections the following properties of 
this solution are of importance. First we note that in the limit of strong forcing the 
dominant term of the streamfunction is a circularly symmetric monopole with a 
constant relative vorticity as if the beta-effect were absent. At the next order (a') a weak 
dipole still exists which breaks the symmetry of the total streamfunction around the 
east-west axis. The relative vorticity at this order in a is a linear function of the 
north-south coordinate and exactly annihilates the planetary vorticity gradient. Thus 
at order a' the absolute vorticity vanishes. In consequence, the breaking of the circular 
symmetry of the absolute vorticity appears for the first time at the next order (a-l). 
Quite evidently then, in this strongly forced nonlinear limit there is no unique 
relationship between absolute vorticity and streamfunction as can also be seen in the 
scatterplot for this limit in figure 2(third column). This already is an indication that the 
regime where a goes to infinity keeping K constant cannot be classified as an inertial 
regime. The proper definition of the latter is the subject of the next two sections. 

4. The sequence to the inertial limit 
In this section we will discuss a sequence of solutions in which a is varied from small 

to high values but in which now S, i.e. the ratio between forcing and friction, is fixed. 
The sequence is represented graphically by the sloping solid line in figure 1. The points 
D, A and E are representative members of such a sequence, corresponding to (lna, 
In 8) = (- 5.00, -0.75), (0, -0.75) and (5.00, - 0.75). In figure 4 we show the associated 
absolute vorticity, relative vorticity, streamfunction and scatter diagrams of absolute 
vorticity versus streamfunction of these solutions, calculated with the method 
described in 92.2 and the Appendix, summing terms up to k = 50. We see that for both 
small and large values of a the relative vorticity and the streamfunction of the solution 
are symmetric: for small values of a around the east-west axis, for large values of a 
around the north-south axis. Going from small to large values of a, the symmetry axis 
turns towards a north-south direction although, again, the symmetry is broken at 
intermediate values of a. As far as the symmetry properties are concerned, this 
sequence is not unlike the Veronis sequence discussed in the previous section, but it 
should be stressed here that the present sequence has a quite different physical 
interpretation. 

As in the Veronis sequence two limiting cases are of special interest. The first is the 
limit in which a --f 0 (In a + - a). Since a = S / K  and 6 is kept constant, this is the limit 
in which both the forcing and the friction become very large. This limit will be 
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FIGURE 4. The absolute vorticity (first row), relative vorticity (second row), streamfunction (third 
row) and scatter diagram (fourth row) of absolute vorticity against streamfunction of the solutions 
corresponding to the points D, A and E of the sequence to the inertial limit, depicted graphically 
by the sloping solid line in figure 1 .  The first column of plots correspond to point D, the second to 
point A and the third to point E in figure 1. The fields were calculated by summing the terms of the 
series expansion in 6 l  up to k = 50. 

discussed in 54.1. The other limit is the case in which a+ 00 (lna+ 00). In this limit 
both the forcing and the friction become vanishingly small. This limit is the inertial 
limit and will be discussed in $94.2 and 5.  

4.1. The limit of strong forcing and friction 
In the limit in which a goes to zero, keeping the value of 6 fixed we encounter a regime 
characterized by strong forcing and friction. The fact that a approaches zero in this 
limit suggests that we expand the different terms tk and xk in (13) in a power series in 
a. We see from (14) that such an expansion of and x-l has only one term, and this 
term is independent of a. By multiplying (14b) with a it  can be seen that the expansion 
of to and xo starts with a term proportional to a. From (14c) it follows that the 
expansion of and x1 starts with a term proportional to a', etc. So, in analogy with 
the limit of strong forcing in the Veronis sequence, we only need to consider the - 1, 
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0 and 1 order terms in the 6-1 expansion if we are satisfied with the solution up to order 
a'. Again, we can then take the analytic expressions given in $2.3 and expand them in 
a power series in a to find that we have in the limit of strong forcing and friction 

(30 4 
a2 
86 

< = - 26+ ar cos 8-a2r sin 8--(2r2 - 1 + r2 cos 28) + O(a3), 

II. = -;6(r2 - 1) ++a(r2 - 1) rcos 8-+a2(r2- 1) r sin 6 

a2 
646 

- - ( r2-  l)(r2- 1 +:r2cos28)+O(a3), (30b) 

a' 
86 <+y = - 26+ r sin 8+ ar cos 6'- a2r sin 6'-- (2r' - 1 + r2 cos 26') + O(a3). (30c) 

The expression for the streamfunction shows that the circulation is nearly circularly 
symmetric. The relative vorticity field is, to first order in a, a linear function of the 
west-east coordinate. So the symmetry of the solution is weakly broken along the 
north-south axis and therefore basically of the 'Stommel' type, i.e. basically of the 
form of the linear limit in the Veronis sequence. 

4.2. The limit of weak forcing and friction - the inertial limit 
More interesting, however, is the limit a = T / ~ K ~ +  00 with 6 = a~ = T / ~ K  kept 
constant. Note that now we have a strongly nonlinear limit with weak (asymptotically 
vanishing) forcing (T )  and friction (K) as a+ co, and T / ~ K  is constant can only be 
realized by having K + 0, whence also T + 0 in order to have T / ~ K  constant. It has been 
argued before by Zimmerman & Maas (1989) and Zimmerman (1993) that this limit is 
the proper definition of an inertial mode in the forced and damped quasi-geostrophic 
vorticity equation. For here the nonlinear advection of absolute vorticity becomes the 
dominant term in the equation while forcing and damping, though constant in their 
ratio, become vanishingly small. Yet the circulation that is ultimately established is a 
result of the subtle balance between the weak effects of forcing and damping. In this 
subsection and in $ 5  we shall show that our series solution is able to solve the inherent 
degeneracy problem of any inertial circulation and of the related problem of the 
functional relationship between absolute vorticity and streamfunction. 

Before discussing our series solution we first summarize the problems which one 
encounters in the traditional approach to the inertial limit. Because a goes to infinity 
in the inertial limit, it is natural to expand < and @ in a power series in a-': 

< = p+a-y+a-2<2+ ..., @ = x0+"-1X1+"-2x2+ ... . (31 a, b) 

Note, again, that on a the superscripts denote powers, whereas on 6 and x they denote 
orders. Equation (12) reads, after multiplying by 6, 

Sa-l<+J(@, <+y)+262a-1 = 0. (32) 
Substituting in (32) the series expansions above and collecting like powers of a-l, we 
get for the order 0 and 1 equations respectively: 

J(x0,[0+y) = 0, 6 ( ~ 0 + 2 6 ) + J ( x 0 , ~ ' ) + J ( x 1 , ~ 0 + y )  = 0. (33a, b) 

These two equations contain the essence of the inertial circulation problem of the 
quasi-geostrophic vorticity equation. The first one (33 a)  describes the 'free mode', the 
second one what we shall call here the 'almost free correction'. Note that (33 b) couples 
both modes. The first equation, (33a), expresses to zeroth order in a-l the conservation 
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of absolute vorticity along a streamline of the zeroth-order field. This presents a 
degeneracy problem in that each absolute vorticity field that is a sufficiently smooth 
function of the streamfunction, i.e. that satisfies 

to +Y = 4x", (34) 
is a solution of (33a). One way to circumvent the degeneracy problem is simply to 
postulate a functional relationship between to  + y  and x o  for which usually a linear one 
is chosen like in the classical solutions of Fofonoff (1954, 1962). If this linear function 
is written as F(z) = a + bz, it can be shown that the solution for a circular ocean basin 
is 

where, as in the exact solution of the Stommel equation, I ,  is an mth-order modified 
Bessel function of the first kind. That (35) indeed leads to the postulated linear relation 
between to  + y  and xo can be verified by using that the functions r )  exp (ime) are 
eigenfunctions of the Laplace operator (2) with eigenvalue b. 

We shall discuss the relationship between absolute vorticity and streamfunction in 
detail in the next section. Here we note that evidently the kind of inertial circulation 
that is established, and thus the functional form of the relationship between absolute 
vorticity and streamfunction, is ultimately set by the equation at first order in a-l, i.e. 
by (33b) and thus by forcing and friction no matter how weak these are. Therefore 
(33b) must in principle be able to remove the degeneracy of (33a). Indeed, if one 
multiplies (33b) by an arbitrary function G(x0) and integrates the equation over the 
whole flow domain it follows that 

J, G(x0) (to + 26) dS  = 0. 

Here D denotes the circular ocean basin and dS  is an area element. If one now 
substitutes for G(x0) a function that is non-zero only in a vanishingly small range dXo 
around a value xo = c, then this equation leads to 

dl 
U0 

( t o +  26) - = 0, (37) 

where dl is a line element in a contour integral over the streamline xo = c and uo is the 
velocity associated with xo.  The condition above expresses that, in a time-averaged 
sense, the forcing and friction terms should balance over each streamline of the inertial 
flow xo. Evidently this is in fact a solvability condition to (33a) as the fields t o + y  and 
xo have to satisfy (37) in order that they are consistent with (33b). In the present 
context, this integral relationship has first been formulated by Niiler (1966) and was 
later elaborated by Pierrehumbert & Malguzzi (1984). It was also used by Marshall & 
Nurser (1986) and by Greatbatch (1987) in the context of more general density-stratified 
systems. We will show that our series method leads to a unique solution of (33a) by 
explicitly constructing a solution of (33 b). 

To this end we return to the series expansion (13). We expand each of the fields tk 
and Xk(k = - 1,0,1,2, . . .) in terms of a power series in a-l: 

tk = [z+a-1t:+a-2tE+..., xk = ~ ~ + a - ~ ~ ~ + a - ~ x ~ + . . . ,  ( 3 8 ~ ,  b) 

which gives for the fields 6' and xz(I = 0, 1,2, . . .) in (3 1) the following expressions : 

t '= 6tL1+[;+6-y;+..., xi = 6xLl+x;+6-'x;+ ... . (394 b) 
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Then we substitute the expansions (38) in (14) and consider the terms up to the first 
order in a-l. 

Concerning (14a), the result of the procedure described above is immediately 
evident. Substituting the expansion for tPl in (14a), we obtain 

t!l = -2, t', = 0, (404 b) 

(41 a, b) 

and for the accompanying streamfunctions 
1 2  xO1 = -?(r - l), xll = 0, 

all higher-order terms, i.e. tF1, t!l, ... and x", 
expansion for Eo in (14b) and collecting terms up to the first order in apl, we get 

... being zero. Substituting the 

a a --t: = rcos8, (:--ti = 0. (424 b) ae ae 
Differentiating (42b) with respect to 8 and using (42a), we obtain 

which is solved by 
ti = rcos0. 

(43) 

(44) 

This solution is not unique. Indeed, any function &r) depending only on r could be 
added. Here we choose this arbitrary function to be zero. No matter, however, which 
choice we make for &r), if we substitute the results back into (42b), we find 

6: = -rsin8, (45) 

which solution satisfies (42a). Note that by considering (42a) and (42b) in conjunction, 
the only indeterminacy is in 6;. The streamfunctions x: and xi are 

x: = -+(r2 - 1) r sin 8, xi = $(r2 - 1) r cos 8. (464 b) 

Continuing with the next order, we get the following set of equations: 

a --GI ae = -J(x:,t:+v), (47 a) 

Because t o + y  = 0, these equations can be simplified to 

For the Jacobian on the right-hand side of (48b) we have 

J(x:, ti) = $[2r2 - 1 - r2 cos 281. (49) 

Differentiating (48 b) with respect to 6 and using (48 a) together with expression (49) for 
the Jacobian, we get 

- c1 = $2 sin 20. 
a 2  

ae2 
(50) 
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The solution, unique up to an arbitrary term &r), is 
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6; = -&r2sin20. ( 5 1 )  

No matter which choices we make for &r) and &r), if we substitute the corresponding 
expression back into (48 b) and use again (49), we obtain 

(52) [ y  = -i(2r2 - l ) ,  

which solution satisfies (48a). For the streamfunctions associated with [ y  and 6; we 
have 

The expressions for c!,, [:, ti, etc. and the accompanying streamfunctions are in 
accordance with the general expression given in $2.3. This can be verified by first 
applying ( 1 5 )  and expanding the results in powers of 01-l. 

We next consider the case for a general value of k 2- 1. For the kth equation of (14) 
we have, retaining terms up to the first order in the expansion in a-l, 

xy = -&(r2- 1 )  (r2 - l), xi = -A(? - 1 )  r2 sin 28. ( 5 3 4  b) 

where Zk and Jk(k  2- 1) are given by 

I ,  = J(x:, [",I) + *.. + J(x!-l, [: +y),  (55  a) 

J k  = J(X:,  6i-i) + ... + J ( X ! - l ,  6;) + J ( X i ,  [!-1)+. .. +J(X:- l ,  6:+Y). (55b) 

We recall that our previous analysis has shown that [:+y = 0. This simplifies 
expressions (55 )  somewhat as it implies, in particular, that I ,  = 0. Differentiating (54b) 
with respect to 0 and then substituting (54a), gives 

a 2  a 
ae2 ae -6' = I,+-Jk. 

A solution is obtained by integrating twice with respect to 19 (concerning the integral 
operator, see also $A 1 of the Appendix): 

Again, the solution is unique up to an arbitrary term [:(r) .  Furthermore, the 
integration with respect to 0 is only possible if Zk does not contain terms which depend 
only on r.  We now assume that the field Zk does not contain such terms. (This 
assumption should, in fact, be proven but calculations with the formula manipulation 
package Mathematica have shown that it is tru? for at least 20 orders in the 6-1 
expansion.) No matter which choice we make for [k, we obtain for [! after substituting 
(57) into (54b) 

= J I k + J $ J k - J k .  (58 )  

This expression solves (54a). Note that the first term on the right-hand side of (58)  does 
not contain terms that only depend on r.  The second and third terms together, on the 
other hand, only give terms that depend on r.  Equations (57) and (58) ,  together with 
(55 )  are the basis of our calculation of to and [l and the corresponding streamfunctions 
xo and xl. 
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We conclude this subsection by discussing a few examples. Using the spectral 
method, described in the Appendix, we calculated 6; and t i  up to k = 50. The series 
expansion of t: converges uniformly if In6 > -0.94, whereas the expansion of [k 
converges uniformly if In 6 > - 0.93, as has been established in the manner discussed 
in the Appendix. In figures 5(a) and 5(b) we show three examples of solutions 
calculated in the manner described - summing all terms in (39) up to k = SO. The 
values of 6 are In 6 = 0.25, - 0.25 and - 0.75 (first, second and third column in figure 
Sa). In the figure we show the absolute vorticity t o + y  (first row), the relative vorticity 
to  (second row), the streamfunction xo (third row) and a scatter diagram of t o + y  
against xo (fourth row). The third column of this figure should be compared with the 
third column of figure 4, where the solution for the same value of 6 is shown but with 
a large though finite value of a. Notice that the scatter diagrams clearly demonstrate 
that we obtained truly free mode solutions of (33 a) with a single functional relationship 
between to  + y  and 2'. Notice also that the functional relationships are slightly 
nonlinear and that they become more nonlinear if 6 becomes smaller. In figure 5 (b) we 
show for the same three values of 6 (the three different columns) the solutions for 5' 
(first row) and x1 (second row). The fact that we found these solutions implies that the 
basic free mode solutions of (33 a) satisfy the Niiler-Pierrehumbert-Malguzzi integral 
criterion. Indeed, this criterion is a necessary condition for (33 b) to be solvable. 
Because we actually solved that equation, the condition must be satisfied. We notice 
that this favourable state of affairs is the result of considering (33a) and (33b) at the 
same time. 

As to the symmetry properties of the free mode and the almost free correction we 
observe the following. The free mode has a symmetry axis that runs north-south. 
Around the east-west axis the symmetry is broken in that the circulation is stronger on 
the northern side, reminiscent of the northern boundary layer in a Fofonoff mode. 
Indeed, as was first noted by Hariland (1950), any flow on a rotating sphere with closed 
streamlines that conserves absolute vorticity must show this basic asymmetry. Here we 
see that the asymmetry is already established by the first two terms in the series 
expansion of the free mode, i.e. the sum 6xOl+x: (41a) and (46a)). Note that the 
strength of the symmetry breaking is given by 6-l. This is the equivalent of the 
establishment of an inertial boundary layer if 6+ 0, when 6 becomes the dimensionless 
width of the boundary layer. By definition of 6 this width is a function of forcing and 
damping. Thus our 6 is the same parameter as the inferred dimensionless thickness of 
the inertio-frictional boundary layer as given by Niiler (1966). (For a full appreciation 
of this role of 6 we refer to the latter reference or to Zimmerman & Maas 1989.) Note 
also that just as in the limit of strong forcing in the Veronis sequence, the planetary 
vorticity gradient is annihilated by the gradient of the 6; field. Around the north-south 
axis the symmetry of the free mode will actually be broken by the almost free correction 
which is antisymmetric around the north-south axis. Thus, in the presence of weak 
forcing and friction the flow is slightly reinforced on the west side and weakened on the 
east side. Also this corroborates the result of Niiler (1966). 

5. The absolute vorticity versus streamfunction relationship 
As has been noted before, the specific absolute vorticity versus streamfunction 

relationship is a subject of central concern in geophysical fluid dynamics. In ocean 
circulation theory a question that often arises is whether a quasi-inertial gyre 
approaches the Fofonoff mode, i.e. an inertial circulation with a linear functional 
relationship between absolute vorticity and streamfunction. That the inertial mode 
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FIGURE 5. (a) The absolute vorticity t 0 + y  (first row), the relative vorticity to  (second row), the 
streamfunction xo (third row) and a scatter diagram (fourth row) of to + y  against xo of the solution 
in the inertial limit, calculated using the series expansion in S' up to k = 50. In the first column the 
value of In8 is 0.25, in the second Ins is -0.25 and in the last Ins is -0.75. The fields in the third 
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5 x 3 x 222 
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5 x 3 2  x 220 

7 x 3169 
5 x 3 x 221 
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- 

- 

TABLE 2. A few values of the coefficients a,,, a,,, etc., calculated in the manner described in $5 and 
using the formula manipulation package Mathematica. The value of aij is placed on the ith row and 
in the jth column. 

should have such a linear relationship has sometimes been inferred from a result of 
equilibrium statistical mechanics of two-dimensional flow. If one maximizes a suitably 
defined macroscopic entropy under the constraints of a fixed circulation, energy and 
potential enstrophy one obtains as the most probable state a flow configuration that 
is characterized by a linear relationship between absolute vorticity and streamfunction 
(e.g. Salmon, Holloway & Hendershott 1976). The consideration of only circulation, 
energy and potential enstrophy as constraints is then loosely supported by viscous 
dissipation of the other conserved quantities at small scales. This argument forms the 
basis of Holloway's (1986) suggestion that in the weakly dissipative cases studied by 
Merkine et al. (1985) the Fofonoff mode is emerging despite forcing and dissipation. 

In principle, the restriction to only three constraints in a statistical mechanical 
approach is unnecessary. Indeed, recent work on the statistical mechanics of 
geophysical fluid flow (Robert & Sommeria 1991 ; Miller, Weichman & Cross 1992) has 
shown that it is possible to formulate a statistical mechanical theory that takes into 
account all other conserved quantities of the inviscid system (e.g. all other powers of 
the absolute vorticity integrated over the flow domain). If all invariants are properly 
dealt with, in general a nonlinear relationship between absolute vorticity and 
streamfunction will be the result. Without wanting to suggest any direct connection 
of these results with ours we shall nonetheless show that also for the problem we deal 
with here the functional relationship between absolute vorticity and streamfunction is 
in general a nonlinear one, determined by the ratio 6 of the (vanishingly small) forcing 
and friction terms. The latter result corroborates the conclusion of Merkine et al. 
(1985) that, if nearly inviscid steady states are possible, the functional relationships 
between their absolute vorticity and streamfunction are determined by the (vanishingly 
small) forcing and friction terms. 

column should be compared with those of the third column in figure 4, where the solution is shown 
for the same value of S but with a large though finite value of a. (b) The relative vorticity 6, (first row) 
and the streamfunction x1 (second row) of the almost free correction, calculated using the series 
expansion in S' up to k = 50. In the first column the value of In S is 0.25, in the second In8 is -0.25 
and in the last In8 is -0.75. 
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FIGURE 6. Left column: the functional relationship (76)  between t o  + y  and xo with the coefficients a,, 
a,, etc. in (65)  up to order 8' (giving a linear relationship), up to order S4 (giving a quadratic 
relationship) and up to order S6 (giving a cubic relationship). In the upper row the value of Ins  is 
0.25, in the middle row In8 is -0.25 and in the last row Ins  is -0.75. Right column: the functional 
relationship (76) between g0+y  and 2'' with the coefficients a,, a,, etc. in (65)  up to order S6 (giving 
a cubic relationship), together with the scatter diagrams of figure 5(a )  corresponding to the same 
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In analysing the functional relationship between the absolute vorticity 5' +y and the 
streamfunction xo in the inertial limit, we may study these fields on any smooth curve 
that crosses the streamlines. It turns out to be convenient to choose the line 0 = 0 and 
0 d r < 1. In the expansions of t " + y  and xu we then only need to consider terms of 
the form rncosmO. Furthermore, because [O+y and xo were seen to be symmetric 
around the axis x = 0, there will be no terms of the form rn cos rn0 with m odd. So, we 
only have to study terms in the expansion of the form rn cos m0 with m even. Now, it 
follows from the general properties of the series expansion in F1, as given in $2.3, that 
in the expansions (39) 

[O+y = S [ ~ , + [ ~ + y + 6 - ' [ ~ + S 2 5 ~ +  ... , 
x o  = SX!, + x; + S-'x? + 6-2x; + . . . 

(59 a) 

(59 b) 
only the fields [!,, [ y ,  t!, etc. and x!,, xy, x:, etc. contribute terms rn cos m0 with m 
even. So, if we define 

q(r) = ~-l([O+y),  p (r )  S-'xo, (60a, b)  
where ['+y and xo are evaluated in ( r ,  0 = 0), we can write 

q(r) = qO(r) + 6-,q,(r) + F44,(r)  + . . ., (61 4 
p(r)  = p,(r) + P p , ( r )  + SP4p,(r) + . . ., (61 b) 

where 4 l (4  = t;z-19 PZW = x;l-l> (62a, b) 
evaluated in ( r ,  0 = 0). In $2.3 it also mentioned that the vorticity fields in the order-k 
contribution are elements of T(k+ 1) and that the streamfunction fields are elements 
of T(k + 3) with Irnl d k + 1. In the light of the foregoing this means that 

4 k )  = 410 + r24z1 + . . . + r219zz, 
Pl(4 = Pzo + Y2PLl + . . . + r 2 h 1  + r2z+2Pll+l, 

(63 4 
(63 b) 

i.e. qL is a power series in r2 with degree I and p z  is a power series in r2 with degree I + 1. 

(64) 

(65 a)  
(65 b) 
(65 c) 

We now conjecture that q can be written as a power series in p ,  i.e. 

d r )  = a, + a, p ( r )  + a, p(r)I2 + a3[p(r)13 + . . . 

a, = a,, + 6-2a0, + S4ao2 + P a , ,  + . . .) 
a, = 8-2a1, + 6-4a1, + SPa,, + S-%,, + . . . , 
a2 = S-4az2 + $-6a,, + S-sa24 + S-10a2, + . . . , 

where a,, a,, a,, etc. are power series in S-' of the form 

Substituting (61) and (65) into (64) we get 

qo + P q ,  + 6-94, + . . . = a,, + S-2a01 + 6-4a0, + . . . 
+ [S-2all + S-4a1, + . . .] [ p ,  + P p ,  + s-4p2 + . . .] 
+ [ r 4 a , ,  + 6-6a,3 + . . .] [ p ,  + P p ,  + S-4p2 + . . . I2 

+ [ ~ a , ,  + + . . .I [ p ,  + ~ p ,  + ~-4p, + . . .33 + . . . . (66) 

4 0  = a,,. (67) 

a,, = 4 0 0 .  (68) 

Collecting terms of like order in 6-', we obtain for the P'-independent contribution 

As 4, only consists of the constant term qoo we get 

values of 6. The figure shows that the cubic functional relationship already gives an almost perfect 
fit to the points. 
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Equating the 6-2-order terms we obtain 

which gives, when combined with (63), 

W. T. M.  Verkley and J .  T. I;. Zimmerman 

41 = a,, + a,, Po, 

410 + r2411 = a,, + ~,,(P,, + r2Po,). (70) 
Equating like powers of r2 gives two linear equations in the two unknowns a,, and a,,. 
The solution is 

(71 a, b) Po0 411 
Po1 Po1 

a,, = 410--411, a,, = -. 

For the next order in we have 

4 2  = ~02+~l lP1+~lzPo+~22P;~  
or, after substituting (63), 

q20+r2q21+r4q22 = ~ 0 2 + ~ 1 1 ( ~ 1 0 + ~ 2 ~ 1 1 + ~ 4 ~ 1 2 )  

+ a12(~,, + r2p0,) + 4 ~ ; ~  + 2 ~ 2 ~ , o ~ o ,  + Y~P;,). (73) 
Equating like powers of r2 gives a system of three linear equations in the three 

unknowns ao2, a12 and a22. Closer inspection of (66) shows that the pattern repeats 
itself: equating the K 6  terms leads to four linear equations in four unknowns, equating 
the 

The analysis above shows that the coefficients a,,, a,,, ao2, etc. in (65) can be found 
in a systematic way. For the coefficients a,,, a,, and a,, we can use the expressions in 
$4.2 to obtain their values. Indeed, it follows from (40a) (41a), (52) and (53a) that 

which gives for a,,, a,, and a,, 

The other coefficients can be found in a similar way. Using the formula manipulation 
package Mathematica we calculated a few more coefficients, which are given in 
table 2. 

Since our series solution for the free mode obeys (33a), the functional relationship 
(64) must hold for all other points in the domain. Substituting (60) in (64) and 
multiplying the left-and right-hand sides by 6 gives 

where the coefficients a,, a,, a,, etc. are given by (65) and a few of the numbers a,,, a,,, 
etc. are given in table 2. In the left column of figure 6 we show the functional 
relationship with the coefficients a,, a,, etc. up to order 6’ (linear), up to order K4 
(quadratic), and up to order K 6  (cubic) for In 6 = 0.25, -0.25 and -0.75. These values 
of 6 are the same as those corresponding with the cases in figure 5. In the right column 
of figure 6 we show the cubic functional relationship for these three cases together with 
the scatter plots as shown in figure 5 (a). We see that already for the cubic relationship 
the points of the scatter diagram neatly fall on the calculated functional relationships. 

We can now use the result (76) in order to establish the physical condition for which 
the functional relationship between absolute vorticity and streamfunction tends 
asymptotically to a linear one. As is evident from the structure of the coefficients a,, 
a,, etc., this is the case if 6- 00. Now in terms of dimensional quantities ($2) we have 

terms leads to five linear equations in five unknowns, etc. 

400 = -2, 410 = :, 411 = ;; Po, = f, Po, = 4, (74a, b) 

a,,=-2, a 01 - - A  - 8’ a 11 = I  2’ (75) 

6 0  + y = &a, + a, x o  + &-la2 [x”]” + 84a3 [x”]” + . . . , (76) 
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where TR = 1/PR is the period of the gravest Rossby wave and T, = K* /T*  is the 
circulation timescale of the gyre. Physically then a linear functional relationship 
between absolute vorticity and streamfunction applies if the circulation timescale is 
much smaller than the period of the gravest Rossby wave. Conversely, a small 8, as in 
a circulation with a genuine inertial boundary layer, will result in a strongly nonlinear 
functional relationship. 

6. Summary and conclusions 
We have shown that in the strongly nonlinear limit, i.e. a large value of the 

parameter a as defined in (9, a wind-driven ocean gyre may be in two distinct modes 
which are only superficially similar. If one keeps the Ekman number (friction) fixed and 
increases the Rossby number (forcing) one encounters the strongly forced limit. The 
circulation becomes asymptotically circularly symmetric with a relatively weak dipolar 
perturbation. The dominant circularly symmetric contribution is proportional to a 
whereas the dipolar contribution is independent of a. The latter contribution breaks 
the circular symmetry such that the remaining symmetry of the circulation pattern is 
around the north-south axis. The dipolar perturbation has a relative vorticity field that 
varies linearly with the north-south coordinate and that exactly annihilates the 
planetary vorticity gradient. In this limit there is no unique relationship between 
absolute vorticity and streamfunction, proving that this limit is certainly not an inertial 
one. It is this limit that is the strongly nonlinear asymptote of the numerical simulation 
sequence of Veronis (1966b). 

The second strongly nonlinear limit is obtained by having asymptotically vanishing 
Rossby and Ekman numbers while at the same time having a approaching infinity. The 
latter can be realized by having a constant ratio of the Rossby and Ekman number and 
then letting both go to zero since a is proportional the ratio of the Rossby number and 
the squared Ekman number. The circulation obtained in that regime is a genuine 
inertial circulation. It shares two features with the limit of strong forcing: a 
north-south symmetry axis and annihilation of the planetary vorticity gradient. 
However, it does have a unique relationship between absolute vorticity and 
streamfunction, which is in general a nonlinear one. Only when the circulation time is 
greatly exceeded by the period of the gravest Rossby wave is the relationship 
asymptotically linear. 

The establishment of a unique functional relationship in the inertial limit is closely 
related to a solvability condition for the free mode in terms of the almost free 
correction, as was first formulated by Niiler (1966) and Pierrehumbert & Malguzzi 
(1984). It is a point of strength of our perturbation series that it is able to give more 
than just a formal condition for the solution of the free mode, but that it produces in 
series form a closed solution both for the free mode and for the almost free correction. 
From that solution the functional relationship can be obtained as the absolute vorticity 
in terms of a power series in the streamfunction. 

The work described in this paper originated when one of the authors (W.T.M.V.) 
held a postdoctoral position at the Netherlands Institute for Sea Research and was 
completed during his subsequent affiliation with the Royal Netherlands Meteorological 
Institute. The support given by both institutes is gratefully acknowledged. This 
investigation was supported (in part) by the Working Group on Meteorology and 
Physical Oceanography (MFO) with financial aid from the Netherlands Organization 
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m 

FIGURE 7. Graphical representation of the functions Xm,(r, 0) = rn eims. Each dot, with coordinates m 
and n, is to be associated with one function Xmn. Note that the n-values increase in steps of two. The 
dots shown in this figure represents the space T5. 

for Scientific Research (NWO). We thank Dr L. R. M. Maas for his comments on the 
first draft of this paper. 

Appendix. A spectral method to solve the equations 
In this Appendix we will demonstrate how the hierarchies of equations that appeared 

in the foregoing sections can be solved systematically to any order in K - ~  or 6-l. For 
convenience we limit ourselves to the series expansion (7) and the hierarchy of 
equations (1 l), but everything that follows holds equally well for (1 3) and (14) and for 
the different limiting cases. To explain the method we start by introducing the functions 

wherem= ... -2, -1,0,1,2,...andn=JmJ+2pwithp=O,1,2 ,.... I f - N d m d N  
and n d N these functions span the same linear vector space as 1, x, y ,  x2, xy, y 2 ,  . . . , 
xN, xN-ly, ..., xyNP1, y N .  The space spanned by the functions (A 1) for a finite value 
of N is denoted by TN. The functions Xmn can be represented conveniently by a 
diagram in which each function is denoted by a dot in a lattice of which the coordinates 
are m and n, see figure 7.  The T in this notation, in analogy to the usage in spectral 
models for a sphere based on spherical harmonics, refers to the triangular shape of the 
lattice of points representing the functions in figure 7. (This figure represents a T5 
truncation.) Any field 7 that belongs to TN can be written as 

N N  

T = c c T m n x m n ~  
m=-N n=lml 

where, as n = Iml+2p, the summation over n involves Im(, (ml+2, ...) etc. The 
coefficients vmn are usually complex and can be written as 

where 7Ln is the real part of y m n  and yt, is the imaginary part. In order for the field 
7 to be real, we should have that 

7-rnn - Vmn, (A 4) - *  

where the asterisk denotes complex conjugate. 
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A.l. Representation of the operators 
To explain how the functions Xmn can be used to solve the equations (1 l), (14) or their 
limiting cases (24) and (54)-(58), we consider the action of the operators appearing in 
these equations. These operators are the derivative a/aO, (1 - aa/aO), (ap1 - a/aO), the 
Laplacian V2 as well as their inverses and the Jacobian. Let us first consider the 
operator a/aO and its inverse J'. We note that the derivative operator acting on a field 
that only depends on r yields zero. As a consequence, the integral operator is only 
defined for arguments that do not contain fields that only depend on r .  In addition, 
there is some arbitrariness in the action of the integral operator as any field that 
depends only on r could be added to the result. In our definition of the integral 
operator we set this arbitrary field equal to zero. So, the action of the operators a/aO 
and on the functions X m n  is given by 

(A 5a, b) 

These expressions make explicit that if 7 belongs to TN, then av/aO belongs to the 
subspace of TN with m = 0 excluded. Furthermore, is only defined if the 
representation of 7 does not contain terms with m = 0. From the expressions above it 
follows for the representations that 

where [. . . I m n  denotes the coefficients of the field between brackets. For any operator of 
the form (a + b a/aO) and its inverse (a + b a/aO)-' we have 

(a+b$)Xmn = (a+imb)Xmn, (A 7 4  

(a+b$)-'Xmn = (a+imb)-l Xmn.  

If a =k 0 these operators leave the space TN invariant. From the expressions above it 
is easily deduced that 

[(a+b$)'] = (a+imb)-'Tmn. 
mn 

It can be verified from (2) and (A 1) that for the Laplace operator V2 and its inverse 
VP2 we have 

V2 Xmn = (n2 - m2) Xmn+ 

V-'Xmn = ((n + 2)2 - m2>-'(Xmn+, - X,,,,). 
(A 9 4  

(A 9b) 

These expressions show that if 7 belongs to TN then V2r belongs to T(N- 2) and Vp2r 
belongs to T(N+2) with Iml d N. It can be deduced from (A 9) that we have 

[V27lmn. = ((n + 212 -m2) ?1mn+29 (A 10a) 

[ V - 2 ~ I m n  = C (n'2-m 2 1 -1 ( 8 nn'-SnIml)Tmn'-2. (A lob) 
N + 2  

n'=lm1+2 
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We note that V-’y, being the streamfunction associated with 7, should obey the 
boundary condition V-’7 = 0 at r = 1. The coefficients [V-’y],, should therefore 

satisfy N + 2  

C [V-’~Irnn = O  (A 11) 
n=lml 

for all values of m for which Iml < N .  This condition follows directly from the fact that 
the r-dependent part of the functions X,, is 1 at r = 1. It can be checked that (A lob) 
is in accordance with this condition. Furthermore, the Laplace operator is supposed to 
act only on fields that satisfy this condition. 

We now discuss the method by means of which the Jacobians are calculated. Let us 
consider two fields y and r, where 7 (a streamfunction) belongs to T(M+2) with 
Iml < M and r (a vorticity field) belongs to TN. The coefficients of these fields are ymn 
and gmn, respectively. For the Jacobian of 7 and g we can write 

M M+2 N N 

J(7,g) = C C C C 7mngrn,n,J(xmn,Xrn,n,). (A 12) 

(A 13) 

m=-M n=lml m‘=-N n’=/m’l 

From the definition of the Jacobian and the functions X,, it can be verified that 

From (A 13) it can be seen that the Jacobian of 7 and r belongs to the space T(M+ N )  
and can therefore be written as 

J (xmn ,  xm,n,) = i(nm’ -n’m> X(m+m,) (n+n’-Z). 

M+N M+N 

J(v,c) = C C J m n x m n -  (A 14) 
m=-(M+N)  n=lml 

By writing (A 13) formally as 
M+N M+N 

J(Xm,, xm,n,)  = C C i(nrn’ - n’m) S(m+mf) ,,, S(n+n,-2) ,,, Xmnntr, (A 15) 
m”=-( M +  N ) n”=lm”l 

we obtain for J,, the expression 
M M + 2  N N 

J,, = C 2 C C i(n‘m“-n“m‘) Srn(,,+,,,) 6n(n.+n.-2, y,.,. urn,,,,,. (A 16) 

In principle the quadruple summation in (A 16) can be reduced to a double summation. 
In our calculations we did not use that possibility. 

A.2. General properties of the series 
We will next show that the fields ck and $k that result from solving the kth equation 
(1 1) have the following properties. First, ck is an element of T(k + 1) and, consequently, 
the field $k is an element of T(k + 3) with Iml < k + 1. Secondly, for even k the fields 
Ck and ~k are expressed in functions X,, with odd m and for odd k the fields Ck and 
$k only contain functions X,, with even m. The proofs are by induction. Let us start 
with the first property. From inspection of (9), (16) and (18) it can be seen that the 
statement is certainly true for k = - 1,0 and 1. Let us assume it is true for all k-values 
less than some value I- 1. To prove that it is also true for k = I we note that the 
Jacobians in (1 1) have the general form J(${, Q-i-,) with i = 0, 1, ..., I- 1. Now, 
because ${ is the streamfunction associated with ci it will be, by assumption, an element 
of T(i+3) with Iml < i+ 1. By the same assumption will be an element of T(1-i). 
From the discussion above on the calculation of the Jacobian it can then be seen that 
J(${, <L-i- l )  is an element of T(I+ l), independent of i. So the whose source term in the 
Ith equation (1 1) is an element of T(I+ 1). As the operator (1 -aa/i30)-’ leaves the 
space T(I+ 1) invariant the resulting el will also be an element of T(I+ 1) and $l will 

m’=-M n’=lml m “ - N  n’’=lm”l 
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therefore be an element of T(l+ 3) with Iml < I+ 1, which completes the proof. The 
second property can also be proven by induction. Inspection of (9), (16) and (1 8) shows 
again that the statement is true for k = - 1, 0 and 1. Let us assume that it is true for 
all k-values less than some value 1- 1 and let us first assume that 1 is even. Owing to 
the general form J ( I , ~ ~ ,  cL-i-l) with i = 0, 1, . . . , 1 - 1 of the Jacobians in (1 l), we have that 
for even as well as odd i the Jacobians in (1 1) only contain functions X,, with m odd. 
This follows from the induction assumption and property (A 13) of the Jacobian. Now, 
as the operator (1 - aa/a0)-' does not change functions X,, with odd m into functions 
X,, with even m or vice versa, the resulting field Ct will only contain functions X,, with 
odd m. This proves the conjecture for even 1. In the same way the conjecture can be 
proven for odd 1. 

A.3. Convergence of the series 
The procedure we have used in solving the hierarchy of equations (11) can now be 
described as follows. The field C-, and corresponding $-1 are directly given by (9). The 
next field co is obtained by applying (1 -aa/aO)-l to ax = arcos 0, using (A 7b). 
The corresponding $o is calculated by using (A lob). Then the Jacobian term 
- J($o, c0 +y)  is calculated by means of (A 16) after which, in the same manner as 
described above, (1 - aa/a0)-' is applied to the result, giving t;,. Then $1 is calculated 
by means of (A lob) and the procedure is repeated up to the desired order. 

Using the method described above we solved the hierarchies of equations up to 
k = 50. Because the results are only relevant if the series for C and $ converge, we 
consider the convergence properties, in particular the convergence of 5. Define Mk to 
be the maximum absolute value of ck. Then, according to Rudin (1964, p. 134) the 
series (7a) for < converges uniformly if 

(A 17) 
converges. Expression (A 17) is a power series in K - ~  and, according to Rudin (1964, 
p. 60), this series converges if K is larger than the inverse radius of convergence p 
defined by 

(A 18) 

M = K M - l  + M, + K-lM, + K-ZM, + . . . 

p = lim sup Milk. 
k + m  

For the series expansion in 8-l analogous results hold. Indeed, owing to (15) the 
maximum absolute values of tk are ak times the maxima Mk.  For the inverse radius of 
convergence of the series expansion in 8-l, which we denote by ,u, we therefore have 
,u = ap, as can be seen readily from (A 18). 

To obtain the value of p we calculated Mk by searching for the largest absolute value 
of ck among the points of a rectangular 51 x 51 grid xij  = -l+(i-l)/25, 
y i j  = - 1 +( j -  1)/25 for which xij+yij < 1. As a typical example we show in figure 8 
for a = 1 the values of In Mk as a function of k. The figure strongly suggests that, for 
large values of k, we have 

lnMk - lna+klnb, 

where lna and lnb are constants, i.e. asymptotically lnMk becomes a linear function 
of k. This means that p is given by 

(A 19) 

In a + k In b 
p = lim supexp( ) = b. 

k + m  

The value of b can be determined by applying a least-squares fit of a linear graph 
through the points with k = 30 to 50, giving for lnp the value - 1.44. The accuracy of 
the value thus obtained can be estimated by repeating the fit for several other ranges 
of k and leads to an estimated accuracy of 1 %. The calculation of the inverse radius 
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FIGURE 8.  Graph of lnM, as a function of k (for a = l), where M, is the maximum absolute value 
of 5, and k is the order of the expansion in K-'. The value of M, was obtained numerically by 
searching for the maximum absolute value of 5, within the circular basin on a rectangular 51 x 51 
grid. The graph shows that In M ,  asymptotes to a linear descending line, the slope of which gives the 
inverse radius of convergence of the series expansion 

FIGURE 9. The absolute vorticity (upper row), relative vorticity (middle row) and streamfunction 
(bottom row) of the solution with parameters (lncr, 1nK) = (0, -0.75) (point A in figure 1) and for 
different lengths of the expansions in K-'. In the first column of the figure the terms were summed up 
to k = 0, in the second column up to k = 1 and in the third column up to k = 50. 
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of convergence was carried out for a large set of a-values. The results are displayed in 
figure 1, as explained in $2.3. The solid curve in figure 1 is a graph of lnp as a function 
of In a. So, points above this curve correspond to parameters a, K and S for which the 
series expansion for 5 converges uniformly. Points beneath the curve correspond to 
parameters for which the series expansion does not converge uniformly, although the 
series might converge locally. For clarity the region beneath the curve has been shaded. 

To illustrate the rate of convergence, we consider the absolute vorticity y+ y ,  relative 
vorticity 5 and streamfunction @ for (In a, In K )  = (0, -0.75) or, equivalently, for (In a, 
ln6) = (0, -0.75) (point A in figure 1) for different lengths of the expansions. So, in 
the first column of figure 9 the three fields <+y, 5 and @ are summed to order 0, in the 
second column to order 1 and in the third column to order 50. The figure shows quite 
clearly that the convergence is rapid. Indeed, even the solution to order 1, of which we 
have given the analytic expressions in $2, quite adequately gives us an idea of the full 
solution. 
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